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Abstract

We present a finite element approximation of motion by minus the Laplacian of curvature and related flows. The pro-
posed scheme covers both the closed curve case, and the case of curves that are connected via triple junctions. On intro-
ducing a parametric finite element approximation, we prove stability bounds and compare our scheme with existing
approaches. It turns out that the new scheme has very good properties with respect to area conservation and the equidis-
tribution of mesh points. We state also an extension of our scheme to Willmore flow of curves and discuss possible further
generalizations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we introduce a parametric finite element approximation for motion by surface diffusion with
the possible inclusion of triple junctions. For a closed hypersurface C in Rd , which evolves in time, motion by
surface diffusion is given by the following evolution law for the normal velocity V, see (1.2),
0021-9

doi:10.

* Co
E-m
V ¼ �Ds,; ð1:1Þ

where Ds is the surface Laplacian and , is the sum of the principal curvatures of C. For later use we remark
that for a parameterization~xðq; tÞ 2 Rd of C, (1.1) can be written as a system of second order equations:
V :¼~xt:~m ¼ �Ds,; ,~m ¼ Ds~x; ð1:2Þ
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where~m is a unit normal to C. The second identity in (1.2) is well-known from surface geometry, and yields the
convention that , is positive if the curve is curved in the direction of the normal, see Fig. 1. Note that because
the tangential component~xt � ð~xt:~mÞ~m of the velocity~xt is not prescribed in (1.2), there exists a whole family of
solutions~x, even though the evolution of C is uniquely determined by (1.1).

The evolution law (1.1) was proposed by Mullins [31] as an evolution law for a free surface enclosing a solid
phase, which changes its shape due to the diffusion of atoms along the surface. Later a derivation, in the con-
text of rational thermodynamics, was given by Davi and Gurtin [10]. Motion by surface diffusion governs the
evolution of free surfaces in many applications such as e.g. thermal grooving, sintering, void evolution in
microelectronic circuits and epitaxial growth; see e.g. [31,27,7,22,1, and the references therein]. Existence,
uniqueness and stability results have been given in [19–21].

We remark that a surface that encloses a region in Rd and evolves according to (1.1) conserves volume.
Choosing~m to be the outward unit normal to the region and taking a(t) as the total enclosed volume, this fol-
lows from
d

dt
aðtÞ ¼

Z
C
Vds ¼ �

Z
C

Ds,ds ¼ 0;
where the last identity follows from the Gauss theorem on manifolds. Furthermore the total surface area,
jC(t)j, decreases in time as can be seen from
d

dt
jCðtÞj ¼ �

Z
C

,Vds ¼
Z

C
,ðDs,Þds ¼ �

Z
C
ðrs,Þ2 ds 6 0; ð1:3Þ
where rsf ¼ rf � ð~m:rf Þ~m is the tangential gradient on C, see e.g. [12, p. 150].
In this paper we will restrict our attention to the case d = 2, i.e. curves in the plane. In many applications

networks of curves with triple junctions appear. A model for surface diffusion of a network of curves has been
introduced by Garcke and Novick-Cohen [23], which we describe in the following for a network of three
curves. Let C1, C2, C3 be the given curves in R2 that intersect at two triple junction points K1 and K2; see
Fig. 2. Let~si 2 R2 be the unit tangent to Ci pointing away from the triple junction point K1 and towards point
K2. Then the normal velocity for each curve is given by
Vi ¼ �riDs,i; i ¼ 1! 3; ð1:4Þ

where ,i is the curvature of Ci and ri is the surface energy density of Ci. The curvature is said to be positive if
Ci is curved in the direction of the normal~mi 2 R2, which is the unique unit vector that forms a positively ori-
entated orthonormal system with~si. Then, in addition to (1.4), the following conditions have to hold at the
triple junction points K1 and K2:
the triple junction does not pull apart; ð1:5aÞ
r1~s1 þ r2~s2 þ r3~s3 ¼~0; ð1:5bÞ
r1~s1:rs,1 ¼ r2~s2:rs,2 ¼ r3~s3:rs,3; ð1:5cÞ
r1,1 þ r2,2 þ r3,3 ¼ 0; ð1:5dÞ
where rsjCi
�~si

o
os with s being the arclength chosen to be increasing in the direction of ~si. The conditions

(1.5a)–(1.5d) are an attachment condition, Young’s law, a flux balance condition and a chemical potential
continuity condition, respectively. Young’s law (1.5b) is the force balance (leading to angle conditions) at
the triple junction. If all surface energy densities, ri, are the same, then we recover the familiar 120� degree
Fig. 1. The sign convention for ,.



Fig. 2. The setup of C = (C1, C2, C3).
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condition. The flux balance condition (1.5c) follows from mass balance considerations at the triple junction. In
order to be in thermodynamical equilibrium locally, it is necessary that the chemical potential differences are
continuous which leads to (1.5d); for more details on the above conditions see [23].

Taking the boundary conditions (1.5a)–(1.5d) into account, we easily derive that the total area of the
enclosed phases are conserved; e.g. for the area a3(t) of the phase enclosed by C1 and C2, see Fig. 2, we obtain
that
d

dt
a3ðtÞ ¼

Z
C2

V2 ds�
Z

C1

V1 ds ¼ �r2

Z
C2

Ds,2 dsþ r1

Z
C1

Ds,1 ds ¼ 0;
where the last identity follows from (1.5c). The total free energy of the system is given by
P3

i¼1rijCiðtÞj, where
jCi(t)j is now the length of Ci(t), and we obtain from
d

dt

X3

i¼1

rijCiðtÞj ¼ �
X3

i¼1

ri

Z
Ci

,iVi ds ¼
X3

i¼1

r2
i

Z
Ci

,iDs,i ds ¼ �
X3

i¼1

r2
i

Z
Ci

jrs,ij2 ds 6 0
that the total free energy cannot increase. The first identity above holds because of Young’s law, (1.5b), and
the last identity is true since the boundary conditions (1.5c) and (1.5d) imply that the boundary terms arising
from the integration by parts disappear.

For parameterizations~xi 2 R2 of Ci, i = 1! 3, (1.4) can be written as a system of second order equations:
ð~xiÞt:~mi ¼ �riDs,i; ,i~mi ¼ Ds~xi: ð1:6Þ

A variational formulation of (1.6) will form the basis for our scheme that we present in Section 2.

Let us now shortly discuss existing numerical approaches to surface diffusion. Level set methods to com-
pute surface diffusion and Willmore flow are studied in [9] and [15], respectively. Numerical approximations
of parametric formulations of surface diffusion of closed curves (and surfaces) are the subject of the papers
[3,18,21]. Our approach will use ideas of the latter two papers and of the seminal paper [16]. We remark
that all existing numerical approaches to the parametric formulation need to heuristically redistribute points
tangentially in order to avoid coalescence of points. There are also numerical approaches for surface diffu-
sion of axially symmetric surfaces, see [11], and surface diffusion of graphs, see [2,13]. For an overview we
refer to [12].

As for work on the approximation of curve networks, we refer to [8,34,32] for direct approximations of
motion by mean curvature. A level set approach for mean curvature flow of curve networks has been consid-
ered in [28,35,33]. A phase field approximation of the motion of surface diffusion of a closed curve was studied
in [6], and its extension to curve networks is given in [4]. In the present literature, to our knowledge, there is no
work on the surface diffusion of a network of curves.

This paper is organised as follows. In Section 2, we formulate a finite element approximation of (1.6)
and (1.5a)–(1.5d) and derive stability bounds. Here we first introduce our approximation for the simpler
case of a closed curve, (1.2), and then generalize that scheme to cover (1.6) and (1.5a)–(1.5d) in the case of
a triple junction configuration as in Fig. 2. In addition, we indicate how to generalize the approach to an
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arbitrary setup of curves and triple junctions. Moreover, we extend the scheme to approximate Willmore
flow, and related elastic flows, for closed curves. In Section 3, we present some numerical computations
for closed curves and compare our results with those from other algorithms in the literature. Furthermore,
we include various numerical results on the triple junction setup of Fig. 2 as well as on more general
setups.

2. Finite element approximation

2.1. Closed curves

We introduce the following finite element approximation. Let J :¼ R=Z ¼ [N
j¼1J j;N P 3, be a decomposi-

tion of J into intervals given by the nodes qj, Jj = [qj�1,qj]. Here J is the ‘‘periodic’’ interval [0,1], which we
obtain by identifying points q 2 R and q + k for k 2 Z. Let hj = jJjj and h = maxj=1!Nhj be the maximal length
of a grid element. Then the necessary finite element spaces are defined as follows:
V h
0 :¼ f~v 2 CðJ ;R2Þ :~vjJj

is linear 8 j ¼ 1! Ng ¼: ½W h
0�

2 � H 1ðJ ;R2Þ;
where W h
0 � H 1ðJ ;RÞ is the space of scalar continuous (periodic) piecewise linear functions, with f/lg

N
l¼1

denoting the standard basis of W h
0. Throughout this paper, we make use of the periodicity of J, i.e. qN ” q0,

qN+1 ” q1 and so on.
In addition, let 0 = t0 < t1 < � � � < tM�1 < tM = T be a partitioning of [0,T] into possibly variable time steps

sm :¼ tm+1 � tm, m = 0!M � 1. We set s :¼ maxm=0!M�1sm. Let ~X m 2 V h
0 be an approximation to ~xð�; tmÞ,

and similarly jm 2 W h
0 for ,ð�; tmÞ.

For scalar and vector functions f ; g 2 L2ðJ ;Rð2ÞÞ we introduce the L2 inner product ÆÆ, Ææm over the current
polygonal curve Cm, which is described by the vector function ~X m 2 V h

0, as follows:
hf ; gim :¼
Z

Cm
f :gds ¼

Z
J

f :gj~X m
q jdq;
where in the first integral, and throughout this paper, for notational simplicity there is a slight abuse of nota-
tion. In addition, in the above and throughout this paper, q 2 [0,1] is the parameterization variable and Æ(*)

denotes an expression with or without the superscript *, and similarly for subscripts. In addition, if f, g are
piecewise continuous, with possible jumps at the nodes fqjg

N
j¼1, we define the mass lumped inner product

h�; �ihm as
hf ; gihm :¼ 1
2

XN

j¼1

j~X mðqjÞ � ~X mðqj�1Þj½ðf :gÞðq�j Þ þ ðf :gÞðqþj�1Þ�; ð2:1Þ
where we define f ðq�j Þ :¼ lime&0 f ðqj � eÞ. Furthermore, we note that
rsf :rsg ¼
fq:gq

j~X m
q j

2
and ~mm ¼ �

ð~X m
q Þ
?

j~X m
q j

;

where Æ^ acting on R2 denotes clockwise rotation by p
2
. We propose the following approximation to (1.2): Find

f~X mþ1; jmþ1g 2 V h
0 � W h

0 such that
~X mþ1 � ~X m

sm
; v~mm

* +h

m

� hrsj
mþ1;rsvim ¼ 0 8 v 2 W h

0; ð2:2aÞ

hjmþ1~mm;~gihm þ hrs
~X mþ1;rs~gim ¼ 0 8 ~g 2 V h

0; ð2:2bÞ
where, as noted above, the inner products h�; �iðhÞm as well as $s depend on m.

Remark 2.1. In Section 3, we will report on computations for the scheme (2.2a) and (2.2b) and compare the
results with two other schemes in the literature. The first is from [18] and can be formulated as: Find
f~X mþ1;~jmþ1g 2 ½V h

0�
2 such that for all ~v;~g 2 V h

0
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~X mþ1 � ~X m

sm
;~v

* +h

m

� hrs~j
mþ1;rs~vim � 3

2
hj~jmj2rs

~X mþ1;rs~vim � 1
2
hj~jmj2~jmþ1;~vihm ¼ 0; ð2:3aÞ

h~jmþ1;~gihm þ hrs
~X mþ1;rs~gim ¼ 0; ð2:3bÞ
where ~j0 2 V h
0 is such that
h~j0;~gih0 þ hrs
~X 0;rs~gi0 ¼ 0 8 ~g 2 V h

0:
The system (2.3a) and (2.3b) is a discretization of the variational formulation of
~xt ¼ �ðDs,Þ~m � �Ds~,� 3
2
rs:ðj~,j2rs~xÞ þ 1

2
j~,j2~,; ~, :¼ ,~m ¼ Ds~x
as opposed to (1.2). The second scheme is from [3] and can be stated as: Let ~X mþ1 :¼ ~X m þ sm
~V mþ1, where

~V mþ1 2 V h
0 is part of the solution of: Find f~V mþ1; jmþ1;~jmþ1; V mþ1g 2 V h

0 � W h
0 � V h

0 � W h
0 such that
h~jmþ1;~gim þ smhrs
~V mþ1;rs~gim ¼ �hrs

~X m;rs~gim 8 ~g 2 V h
0; ð2:4aÞ

hjmþ1; vim � h~jmþ1; v~mmim ¼ 0 8 v 2 W h
0; ð2:4bÞ

hV mþ1; vim � hrsj
mþ1;rsvim ¼ 0 8 v 2 W h

0; ð2:4cÞ
h~V mþ1;~gim � hV mþ1~mm;~gim ¼ 0 8 ~g 2 V h

0: ð2:4dÞ
The system (2.4a)–(2.4d) is a discretization of the variational formulation of
~, ¼ Ds~x; , ¼~,:~m; v ¼ �Ds,; ~xt ¼~v ¼ v~m
as opposed to (1.2). We note that both schemes (2.3a) and (2.3b), and (2.4a)–(2.4d) only change the approx-
imation of~x in the normal direction, whereas the scheme (2.2a) and (2.2b) proposed in this paper also induces
tangential changes. This is a crucial difference. Finally, it is shown in [3] that (2.4a)–(2.4d) satisfies a discrete
analogue of (1.3). We will prove the analogous result for (2.2a) and (2.2b), see Theorem 2.3, and the ensuing
comment, below.

Before we can proceed to prove existence and uniqueness to (2.2a) and (2.2b), we have to make the follow-
ing very mild assumption.

ðA0Þ Let j~X m
q j > 0 for almost all q 2 J. For j = 1! N, let~mm

j�1
2

:¼ � ð
~X m

q Þ
?

j~X m
q j
jJj

, and set
~xm
j :¼

j~X mðqjÞ � ~X mðqj�1Þj~mm
j�1

2
þ j~X mðqjþ1Þ � ~X mðqjÞj~mm

jþ1
2

j~X mðqjÞ � ~X mðqj�1Þj þ j~X mðqjþ1Þ � ~X mðqjÞj
¼

�½~X mðqjþ1Þ � ~X mðqj�1Þ�
?

j~X mðqjÞ � ~X mðqj�1Þj þ j~X mðqjþ1Þ � ~X mðqjÞj
:

ð2:5Þ

Then we further assume that dim span f~xm

j g
N
j¼1 ¼ d ¼ 2.

Remark 2.2

a) We note that one can interpret ~xm
j as a weighted normal defined at the node ~X mðqjÞ of the curve Cm,

where in general j ~xm
j j< 1. Noting that ~xm

j points in the direction ½~X mðqjþ1Þ � ~X mðqj�1Þ�
?, we obtain that

the assumption ðA0Þ is equivalent to excluding the following situation: All points f~X mðqjÞ : j is eveng lie
on one straight line and simultaneously all points f~X mðqjÞ : j is oddg lie on another parallel line.

b) Since ~X mðqN Þ ¼ ~X mðq0Þ, we obtain in the case that N is odd that ðA0Þ immediately holds provided all
points do not lie on one straight line. If N is even, then ðA0Þ is only violated on very rare occasions,
see e.g. Fig. 3. For example, for closed curves Cm without self intersections the assumption ðA0Þ always
holds.



Fig. 3. ðA0Þ is violated in this case.
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Theorem 2.1. Let the assumption ðA0Þ hold. Then there exists a unique solution f~X mþ1; jmþ1g 2 V h
0 � W h

0 to the

system (2.2a) and (2.2b).

Proof. As the system (2.2a) and (2.2b) is linear, existence follows from uniqueness. To investigate the latter,
we consider the system: Find f~X ; jg 2 V h

0 � W h
0 such that
h~X ; v~mmihm � smhrsj;rsvim ¼ 0 8 v 2 W h
0; ð2:6aÞ

hj~mm;~gihm þ hrs
~X ;rs~gim ¼ 0 8 ~g 2 V h

0: ð2:6bÞ
Choosing v ¼ j 2 W h
0 in (2.6a) and ~g ¼ ~X 2 V h

0 in (2.6b) yields that
hrs
~X ;rs

~X im þ smhrsj;rsjim ¼ 0: ð2:7Þ

It follows from (2.7) that j � jc 2 R and ~X � ~X c 2 R2; and hence that
h~X c; v~mmihm ¼ 0 8 v 2 W h
0; jch~mm;~gihm ¼ 0 8 ~g 2 V h

0: ð2:8Þ

Choosing ~g ¼~z/j 2 V h

0 in (2.8), and noting (2.1) and (2.5), yields, on assuming jc 6¼ 0, that for all j = 1! N
1
2
j~X mðqjÞ � ~X mðqj�1Þj~mm

j�1
2
þ j~X mðqjþ1Þ � ~X mðqjÞj~mm

jþ1
2

h i
� ~z ¼ 0 8~z 2 R2

() ~xm
j :~z ¼ 0 8~z 2 R2 () ~xm

j ¼~0: ð2:9Þ
However, this contradicts assumption ðA0Þ and hence jc = 0. Similarly, testing (2.8) with v = /j yields that
~X c:~xm

j ¼ 0 for all j = 1! N. It follows from assumption ðA0Þ that ~X c ¼~0. Hence we have shown that
(2.2a) and (2.2b) have a unique solution f~X mþ1; jmþ1g 2 V h

0 � W h
0. h

Here and throughout, for a given n 2 N, let ~Idn 2 ðR2�2Þn�n be the identity matrix, and similarly for
Idn 2 Rn�n. We introduce also the matrices ~N 0 2 ðR2ÞN�N , A0 2 RN�N and ~A0 2 ðR2�2ÞN�N with entries
½~N 0�kl :¼
Z

Cm
ph½/k/l�~mm ds; ½A0�kl :¼ hrs/k;rs/lim; ½~A0�kl :¼ ½A0�kl

~Id1; ð2:10Þ
where ph : CðJ ;RÞ ! W h
0 is the standard interpolation operator at the nodes fqjg

N
j¼1. We can then formulate

(2.2a) and (2.2b) as: Find fd~X mþ1; jmþ1g 2 ðR2ÞN � RN such that
smA0 �~N T
0

~N 0
~A0

 !
jmþ1

d~X mþ1

� �
¼

0

�~A0
~X m

� �
; ð2:11Þ
where, with the obvious abuse of notation, d~X mþ1 ¼ ðd~X mþ1
1 ; . . . ; d~X mþ1

N ÞT and jmþ1 ¼ ðjmþ1
1 ; . . . ; jmþ1

N ÞT are the

vectors of coefficients with respect to the standard basis of ~X mþ1 � ~X m and jm+1, respectively. The discrete sys-
tem arising from (2.4a)–(2.4d) is solved in [3] using a Schur complement approach. We adopt a similar pro-
cedure here for (2.11). Let S0 be the inverse of A0 restricted on the set (kerA0)^ ” (span{1})^, where
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1 :¼ ð1; . . . ; 1ÞT 2 RN and Æ^ acting on a space denotes its orthogonal complement. Then noting that the first

equation in (2.11) implies that 1T~NT
0 d~X mþ1 ¼ 0, one can transform (2.11) to
jmþ1 ¼ 1

sm
S0
~N T

0 d~X mþ1 þ l1; ð2:12aÞ

~A0 þ
1

sm

~N 0S0
~NT

0

� �
d~X mþ1 ¼ �~A0

~X m � l~N 01; ðd~X mþ1ÞT~N 01 ¼ 0; ð2:12bÞ
where l ¼ 1Tjmþ1

1T1
2 R is unknown. We introduce also the orthogonal projection ~P0 onto R?0 :¼ f~X 2

ðR2ÞN : ~X T~N 01 ¼ 0g by ~P0 :¼ ~IdN � ~w~wT

~wT~w, where ~w :¼ ~N 01. Then (2.12b), on noting that ~P0d~X mþ1 ¼ d~X mþ1, is

replaced by
~P0
~A0 þ

1

sm

~N 0S0
~NT

0

� �
~P0d~X mþ1 ¼ �~P0

~A0
~X m: ð2:13Þ
As (2.2a) and (2.2b) have a unique solution, it is easily established that there exists a unique solution to (2.13).
Moreover, the system (2.13) is symmetric and positive definite on R?0 . For details we refer to the triple junction
case which is handled in Theorem 2.4 below.

In addition, a stability result for (2.2a) and (2.2b) is easily established; see Theorem 2.3, and the ensuing
comment, below.

Remark 2.3. It is worthwhile to consider a continuous in time semidiscrete version of our scheme. Here we
replace (2.2a) and (2.2b) by
h~X t; v~m
hih � hrsj;rsvi ¼ 0 8 v 2 W h

0; ð2:14aÞ
hj~mh;~gih þ hrs

~X ;rs~gi ¼ 0 8 ~g 2 V h
0; ð2:14bÞ
where we always integrate over the current curve Ch, described by ~X , and so~mh ¼ � ð~X qÞ?

j~X q j
and ÆÆ, Ææ(h) is the same

as h�; �iðhÞm with Cm and ~X m replaced by Ch and ~X , respectively. It is now straightforward to show that (2.14a)
and (2.14b) conserve the enclosed area, ah(t), exactly; since on choosing v = 1 in (2.14a) and taking into ac-
count (2.1) yields that
0 ¼ h~X t;~m
hih ¼

Z
Ch

~X t:~m
h ds ¼ d

dt
ahðtÞ: ð2:15Þ
To our knowledge, no other direct approximation of (1.2) in the literature satisfies this property. While it is
not possible to prove an analogues of (2.15) for (2.2a) and (2.2b), in practice we observe that the enclosed area
is approximately preserved, and that the area loss tends to zero as s! 0.

Remark 2.4. Furthermore, the scheme (2.14a) and (2.14b) will always equidistribute the vertices along Ch for
t > 0, provided that they are not locally parallel; since on choosing ~g ¼ ð~xh

j Þ
?/j 2 V h

0 in (2.14b), where ~xh
j is

the Ch analogue of ~xm
j , yields, on recalling (2.1) and (2.5), that for j = 1! N
~X jþ1 � ~X j

j~X jþ1 � ~X jj
�
~X j � ~X j�1

j~X j � ~X j�1j

" #
:ð~X jþ1 � ~X j�1Þ ¼ 0)

½j~X jþ1 � ~X jj � j~X j � ~X j�1j�½j~X jþ1 � ~X jjj~X j � ~X j�1j � ð~X jþ1 � ~X jÞ:ð~X j � ~X j�1Þ� ¼ 0

) either j~X jþ1 � ~X jj ¼ j~X j � ~X j�1j or ð~X jþ1 � ~X jÞkð~X j � ~X j�1Þ; ð2:16Þ
where, here and throughout, ~X ðmÞj � ~X ðmÞðqjÞ.
Of course, the analysis in (2.16) immediately carries over to a fully discrete scheme that is fully implicit; that

is, ~mm and h�; �iðhÞm in (2.2a) and (2.2b) are replaced by ~mmþ1 and h�; �iðhÞmþ1. In particular, that scheme would
equidistribute a given parameterization after one time step. But the highly nonlinear nature of both of these
approximations make them not very practical, in comparison to the fully practical scheme (2.2a) and (2.2b).
However, it does not appear possible to prove an analogue of (2.16) for (2.2a) and (2.2b). Nevertheless, in
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practice we see that over a number of time steps the vertices are moved tangentially so that they will eventually
be equidistributed. See Section 3 for details.

As our numerical scheme introduces a tangential change to the given parameterization, an interesting
question to ask is whether a continuous version of the scheme prescribes a tangential velocity and hence picks
one of the family of solutions to (1.2). First, we note from [29, Section 6] that if
~xt ¼V~mþ w~s; ð2:17Þ

then it is easily deduced that
j~xqðq; tÞj
jCðtÞj

� �
t

¼ 0 8 q 2 J ; and t > 0 () wq ¼ ,Vj~xqj �
j~xqj
jCðtÞj

Z
CðtÞ

,Vds; ð2:18Þ
that is, the relative local length is preserved for, and only for, a tangential velocity fulfilling the above condi-
tion. Assuming that ~X 0 is equidistributed, then one can show that the scheme (2.14a) and (2.14b) approximates
(2.17) with V ¼ �Ds, and , as in (2.18). Since, on choosing~g ¼ ð~X jÞt/j in (2.14b) it follows for all t > 0 that
j~X j � ~X j�1jt ¼ Wj �Wj�1 � hj~mh; ~X t/ji
h j ¼ 1! N ; ð2:19aÞ

where Wj ¼
~X jþ1 � ~X j

j~X jþ1 � ~X jj
:ð~X jÞt ð2:19bÞ
approximates the tangential velocity at node j. Summing (2.19a) over j, and noting the periodicity, yields that
jChjt ¼ �hj~mh; ~X tih: ð2:20Þ

Assuming for all j and for all t > 0 that ð~X jþ1 � ~X jÞ,ð~X j � ~X j�1Þ, then (2.16) yields for all t > 0 and for
j = 1! N that
j~X j � ~X j�1j
jChj

 !
t

¼ 0 () j~X j � ~X j�1jt ¼
j~X j � ~X j�1j
jChj

jChjt: ð2:21Þ
Hence it follows from (2.21), (2.19a), (2.19b) and (2.20) for all t > 0 and for j = 1! N that
Wj �Wj�1 ¼ hj~mh; ~X t/ji
h � j

~X j � ~X j�1j
jChj

hj~mh; ~X tih;
which approximates (2.18).
We note that Mikula and Ševčovič [30, (4.2)–(4.5)] introduce a complicated scheme, where a tangential

force is prescribed explicitly, to achieve an equidistribution of nodes. Whereas our semi-discrete scheme
(2.14a) and (2.14b), and a fully implicit version of (2.2a) and (2.2b), achieve this intrinsically. Moreover, in
practice the fully practical scheme (2.2a) and (2.2b) moves the nodes tangentially so that they are eventually
equidistributed, even if they are not equidistributed initially.

To further illustrate this, we consider a simplified version of our scheme for the approximation of
V ¼~xt:~m ¼ 0: ð2:22Þ

Similarly to (2.2a) and (2.2b), the approximation would be: Find f~X mþ1; jmþ1g 2 V h

0 � W h
0 such that
h~X mþ1 � ~X m; v~mmihm ¼ 0 8 v 2 W h
0; ð2:23aÞ

hjmþ1~mm;~gihm þ hrs
~X mþ1;rs~gim ¼ 0 8 ~g 2 V h

0: ð2:23bÞ
Of course, in this case it is possible to eliminate jm+1 from (2.23a) and (2.23b). Then one obtains a symmetric
positive semi-definite system for the unknown bmþ1 2 W h

0, where ~X mþ1
j ¼ ~X m

j þ bmþ1
j ð~xm

j Þ
?, j = 1! N. In par-

ticular, it is then straightforward to show that ~X mþ1 ¼ ~X m solves (2.23a) and (2.23b) if, and only if, ~X m satisfies
(2.16) for all j; that is, ~X m is either equidistributed or locally parallel. Moreover, in practice we observe that the
scheme (2.23a) and (2.23b) moves the vertices such that, after a number of steps, they are eventually equidis-
tributed or locally parallel. Note that the natural extensions of the schemes (2.3a) and (2.3b), and (2.4a)–(2.4d)
to approximate (2.22) would not change the initial parameterization ~X 0.
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2.2. Triple junctions

In this section, we consider the case where a network of curves meeting at triple junction points moves
under motion by surface diffusion. Unless otherwise stated, for ease of exposition, from now on we consider
the case of three curves (C1, C2, C3) with surface energies r:¼(r1, r2, r3) meeting at two triple junction points
K1 and K2, and enclosing two areas, see Fig. 2, and in particular note the stated choice of the direction of the
unit tangents. We will outline later how the ideas presented for this case can be carried over to the general case,
see Remark 2.6 below.

The main idea for the necessary trial (”test) spaces is to make sure, that the conditions (1.5a)–(1.5d) hold
either essentially or weakly at the triple junctions. Here we will enforce conditions (1.5a) and (1.5d) explicitly
through the trial space, whereas conditions (1.5b) and (1.5c) will be enforced weakly, similarly to a Neumann
boundary condition for a standard second order elliptic PDE. In particular, let I :¼ [0,1] be the unit interval
and let
V :¼ fð~v1;~v2;~v3Þ 2 ½CðI ;R2Þ�3 :~v1 ¼~v2 ¼~v3 on oIg

and
W :¼ fðv1; v2; v3Þ 2 ½CðI ;RÞ�
3

: r1v1 þ r2v2 þ r3v3 ¼ 0 on oIg:
Given a test function~g 2 V \ ½H 1ðI ;R2Þ�3, we multiply the second equation in (1.6) on Ci by rigi. Integrating
over Ci and summing over i yields for the right hand side that
X3

i¼1

ri

Z
Ci

ðDs~xiÞ:~gi ds ¼ �
X3

i¼1

ri

Z
Ci

rs~xi:rs~gi dsþ
X2

j¼1

ð�1Þj
X3

i¼1

ðri~sijKj
Þ:~giðKjÞ

" #
; ð2:24Þ
where we have used integration by parts and observed the fact thatrs~xi ¼~si~sT
i . Clearly, dropping the last term

in (2.24) corresponds, as~g 2 V , to weakly enforcing Young’s law (1.5b) at the triple junction points K1 and K2.
Similarly, testing the first equation in (1.6) with a function v 2W yields a weak approximation of (1.5c).

Now let I ¼ [Ni
j¼1I i

j, i = 1! 3, be decompositions of I into intervals I i
j ¼ ½qi

j�1; q
i
j� based on the nodes

fqi
jg

Ni
j¼0, Ni P 2. Let hi

j ¼j I i
j j and h ¼ maxi¼1!3maxj¼1!Ni h

i
j be the maximal length of a grid element. The

appropriate finite element spaces are then defined by
V h :¼ fð~v1;~v2;~v3Þ 2 V :~vijI i
j

is linear 8 j ¼ 1! Ni; i ¼ 1! 3g � V
and similarly for the space of scalar functions Wh � W.
Recall the time partitioning fsmgM�1

m¼0 and let ~X m 2 V h be an approximation to~xð�; tmÞ � ð~x1;~x2;~x3Þð�; tmÞ, and
similarly jm 2Wh for ,ð�; tmÞ. We introduce the r weighted L2 inner product ÆÆ, Ææm, and its mass lumped ana-
logue h�; �ihm, over the current surface Cm :¼ ðCm

1 ;C
m
2 ;C

m
3 Þ, which is described by the vector function ~X m 2 V h,

for scalar and vector functions f ; g 2 ½L2ðI ;Rð2ÞÞ�3 as follows:
hf ; gim :¼
Z

Cm
f :g ds :¼

X3

i¼1

ri

Z
I

fi:gijð~X m
i Þqjdq;

hf ; gihm :¼
X3

i¼1

ri

2

XNi

j¼1

j~X m
i ðqi

jÞ � ~X m
i ðqi

j�1Þj½ðfi:giÞð½qi
j�
�Þ þ ðfi:giÞð½qi

j�1�
þÞ�:

ð2:25Þ
In addition, we note that
ðrsf :rsgÞjCm
i
¼
ðfiÞq:ðgiÞq
jð~X m

i Þqj
2
; ~mmjCm

i
¼ �
½ð~X m

i Þq�
?

jð~X m
i Þqj

; i ¼ 1! 3:
Using a weak formulation of (1.6) and (1.5a)–(1.5d) as indicated in (2.24), we then propose the following
approximation to (1.6) and (1.5a)–(1.5d): Find f~X mþ1; jmþ1g 2 V h � W h such that
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~X mþ1 � ~X m

sm
; v~mm

* +h

m

� hrrsj
mþ1;rsvim ¼ 0 8 v 2 W h; ð2:26aÞ

hjmþ1~mm;~gihm þ hrs
~X mþ1;rs~gim ¼ 0 8 ~g 2 V h: ð2:26bÞ
Before we can proceed to prove existence and uniqueness to (2.26a) and (2.26b), we have to make the fol-
lowing very mild assumption.

ðAÞ Let jð~X m
i Þqj > 0 for almost all q 2 I, i = 1! 3. Let ~mm

i;j�1
2

:¼ � ½ð
~X m

i Þq�
?

jð~X m
i Þqj
jI i

j
, j = 1! Ni and set

~xm
i;j :¼

j~X m
i ðq

i
jÞ�~X

m
i ðq

i
j�1
Þj~mm

i;j�1
2

þj~X m
i ðq

i
jþ1
Þ�~X m

i ðq
i
jÞj~m

m
i;jþ1

2

j~X m
i ðq

i
jÞ�~X

m
i ðq

i
j�1
Þjþj~X m

i ðq
i
jþ1
Þ�~X m

i ðq
i
jÞj

, j = 1! Ni � 1, i = 1! 3. Then we assume further that for each

i = 1! 3 there exists a j 2 {1, . . . ,Ni � 1} such that ~xm
i;j 6¼~0. Moreover, we require that

dim span ff~xm
i;jg

Ni�1
j¼1 g

3
i¼1 ¼ d ¼ 2.

The assumption ðAÞ basically assures that none of the curves Cm
i ; i ¼ 1! 3, is a ‘‘zig zagging’’ connection

between the two triple junctions points K1 and K2. A sufficient condition for ðAÞ to hold is that at least one of
the three curves is not a ‘‘saw tooth’’ like curve similarly to the one in Fig. 3, where all the vertex normals ~xm

i;j,
j = 1! Ni � 1, are linearly dependent.

Theorem 2.2. Let the assumption ðAÞ hold. Then there exists a unique solution f~X mþ1; jmþ1g 2 V h � W h to the
system (2.26a) and (2.26b).

Proof. As (2.26a) and (2.26b) are linear, existence follows from uniqueness. To investigate the latter, we con-
sider the system: Find f~X ; jg 2 V h � W h such that
h~X ; v~mmihm � smhrrsj;rsvim ¼ 0 8 v 2 W h; ð2:27aÞ
hj~mm;~gihm þ hrs

~X ;rs~gim ¼ 0 8 ~g 2 V h: ð2:27bÞ

Similarly to (2.6a) and (2.6b), choosing v = j 2Wh in (2.27a) and ~g ¼ ~X 2 V h in (2.27b) yields that
hrs
~X ;rs

~X im þ smhrrsj;rsjim ¼ 0: ð2:28Þ

It follows from (2.28) that j � jc ¼ ðjc

1; j
c
2; j

c
3Þ

T 2 R3 such that
P3

i¼1rijc
i ¼ 0 and

~X � ~X c ¼ ð~X c
1;
~X c

2;
~X c

3Þ
T 2 ðR2Þ3 with ~X c

1 ¼ ~X c
2 ¼ ~X c

3; and hence
h~X c; v~mmihm ¼ 0 8 v 2 W h; hjc~mm;~gihm ¼ 0 8 ~g 2 V h: ð2:29Þ

Similarly to (2.9), choosing ~g ¼~zui

j 2 V h, for a fixed i = 1! 3 and j = 1! Ni � 1 in (2.29), with ui
j 2 W h

being the standard basis function associated with qi
j, and noting (2.25) yields, on assuming jc

i 6¼ 0, that for
all j = 1! Ni � 1
~xm
i;j:~z ¼ 0 8~z 2 R2 () ~xm

i;j ¼~0:
However, this contradicts assumption ðAÞ and hence jc
i ¼ 0, i = 1! 3. Similarly, choosing v ¼ ui

j in (2.29)
and noting that ~X c

1 ¼ ~X c
2 ¼ ~X c

3 yields that
~X c
1:~x

m
i;j ¼ 0 8 j ¼ 1! Ni � 1; i ¼ 1! 3:
Assumption ðAÞ then yields that ~X c
1 ¼~0, and hence ~X c ¼~0. Hence we have shown that (2.26a) and (2.26b)

have a unique solution f~X mþ1; jmþ1g 2 V h � W h. h

Remark 2.5. Similarly to (2.14a) and (2.14b), in a time continuous semidiscrete version of our scheme (2.26a)
and (2.26b) we obtain exact area conservation, as testing for example with v ¼ ð� 1

r1
; 1

r2
; 0Þ 2 W h in the ana-

logue of (2.26a) leads to
0 ¼
Z

Ch
2

½~X 2�t:~mh ds�
Z

Ch
1

½~X 1�t:~mh ds ¼ d

dt
ah

3ðtÞ;
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where ah
3ðtÞ is the area enclosed by Ch

1 and Ch
2. Moreover, the condition (2.16) now yields that vertices will be

equidistributed on all curve segments of Ch
i , that are not locally parallel. Although we are unable to prove such

results for the fully discrete scheme (2.26a) and (2.26b), the change relative to the initial area never exceeded
1% in our simulations. In addition, we observed the equidistribution property for (2.26a) and (2.26b), see e.g.
Fig. 15 below.

Remark 2.6. The definitions of the spaces V and W can easily be generalized to a situation with KB bubbles/
areas, KC curves and KT triple junction points; and all the results in this section extend to this general case.
Note that the Euler–Poincaré formula yields that 6(KB � 1) = 2KC = 3KT; e.g. KB = KT = 2 and KC = 3 in
Fig. 2. In particular, we would have that
V :¼ fð~v1; . . . ;~vKC Þ 2 ½CðI ;R2Þ�KC :~vijðpj;ijÞ ¼~v1jðpj;1j
Þ; i ¼ 2! 3; 8 j ¼ 1! KTg;

W :¼ fðv1; . . . ; vKC
Þ 2 ½CðI ;RÞ�KC :

X3

i¼1

ð�1Þpj;ij rijvijðpj;ijÞ ¼ 0 8 j ¼ 1! KTg:
Here ij 2 {1, . . . ,KC}, i = 1! 3, denotes the 3 curves meeting at triple junction j, while pj;ij 2 f0; 1g denotes
whether these curves start (pj;ij ¼ 0) or end (pj;ij ¼ 1) at the triple junction point j. I.e. j{ij : i = 1! 3}j = 3
for all j = 1! KT, j{j : ij = c}j = 2 for all c = 1! KC and

PKT
j¼1pj;c ¼ 1 for all c = 1! KC.

Furthermore, we can establish that our scheme is unconditionally stable.

Theorem 2.3. Let f~X m; jmgM
m¼1 be the solution of (2.26a) and (2.26b). Then for all k = 1!M we have
jCkj þ
Xk�1

m¼0

sm

Z
Cm

rjrsj
mþ1j2 ds 6 jC0j;
where jCkj :¼
R

Ck 1ds �
P3

i¼1rijCk
i j on recalling the definition (2.25).

Proof. Choosing v = jm+1 2Wh in (2.26a) and ~g ¼ ~X mþ1�~X m

sm
2 V h in (2.26b) yields that
hrs
~X mþ1;rsð~X mþ1 � ~X mÞim þ smhrrsj

mþ1;rsj
mþ1im ¼ 0: ð2:30Þ
We now analyse the first term in (2.30), using the ideas in [17]. Let ~hi;m
j :¼ ~X m

i ðqi
jþ1Þ � ~X m

i ðqi
jÞ. Then it holds

that
hrs
~X mþ1;rsð~X mþ1 � ~X mÞim ¼

X3

i¼1

ri

Z
Cm

i

½rs
~X mþ1�:½rsð~X mþ1 � ~X mÞ� ds ¼

X3

i¼1

ri

XNi�1

j¼1

j~hi;mþ1
j j2 �~hi;mþ1

j :~hi;m
j

j~hi;m
j j

" #

¼
X3

i¼1

ri

XNi�1

j¼1

ðj~hi;mþ1
j j � j~hi;m

j jÞ
2 þ j~hi;mþ1

j jj~hi;m
j j �~hi;mþ1

j :~hi;m
j

j~hi;m
j j

þ j~hi;mþ1
j j � j~hi;m

j j
" #

P
X3

i¼1

ri

XNi�1

j¼1

½j~hi;mþ1
j j � j~hi;m

j j� ¼ jCmþ1j � jCmj: ð2:31Þ
Combining (2.30) and (2.31) yields that
jCmþ1j � jCmj þ sm

Z
Cm

rjrsj
mþ1j2 ds 6 0: ð2:32Þ
Summing (2.32) for m = 0! k � 1 yields the desired result. h

The proof above is written explicitly for (2.26a) and (2.26b) but as it depends solely on a specific choice of
test functions it immediately carries over to (2.2a) and (2.2b).

We now extend the Schur complement approach developed above for closed curves to triple junctions. Let
N :¼

P3
i¼1ðNi þ 1Þ. We define the orthogonal projections
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K : RN ! X :¼ fðz1; z2; z3Þ 2 RN :
X3

i¼1

ri½zi�0 ¼
X3

i¼1

ri½zi�Ni
¼ 0g ð2:33Þ
and ~P : ðR2ÞN !X :¼ fð~z1;~z2;~z3Þ 2 ðR2ÞN : ½~z1�0 ¼ ½~z2�0 ¼ ½~z3�0; ½~z1�N1
¼ ½~z2�N2

¼ ½~z3�N3
g onto the Euclidean spaces

associated with Wh and Vh, respectively. These two projections will be crucial for the construction of the linear
system for the unknown coefficient vectors in RN � ðR2ÞN that represent the solution to (2.26a) and (2.26b),
rather than having to work with the trial and test spaces Wh and Vh directly. This construction is similar
to the standard technique used for an ODE with periodic boundary conditions.

In order to give a matrix formulation for (2.26a) and (2.26b) we introduce the matrices

~Ni 2 ðR2ÞðNiþ1Þ�ðNiþ1Þ, Ai 2 RðNiþ1Þ�ðNiþ1Þ and ~Ai 2 ðR2�2ÞðNiþ1Þ�ðN iþ1Þ, i = 1! 3, defined by
~N i
kl :¼ ri

Z
Cm

i

ph
i ½/

i
k/

i
l�~mm ds; Ai

kl :¼ ri

Z
Cm

i

rs/
i
k:rs/

i
l ds; ~Ai

kl :¼ Ai
kl
~Id1;
where f/i
lg

Ni
l¼0 is the standard basis of Sh

i :¼ fv 2 CðI ;RÞ : vjI i
j

is linear 8 j ¼ 1! Nig and ph
i : CðI ;RÞ ! Sh

i is

the standard interpolation operator at the nodes fqi
jg

Ni
j¼0. Then on introducing the matrices
A :¼
r1A1 0 0

0 r2A2 0

0 0 r3A3

0B@
1CA; ~A :¼

~A1 0 0

0 ~A2 0

0 0 ~A3

0B@
1CA; ~N :¼

~N 1 0 0

0 ~N 2 0

0 0 ~N 3

0B@
1CA; ð2:34Þ
where A : RN ! RN , ~A : ðR2ÞN ! ðR2ÞN and ~N : RN ! ðR2ÞN , the system of equations (2.26a) and (2.26b) can
be written as: Find fd~X mþ1; jmþ1g 2 X�X such that
smKAK �K~N T~P
~P~NK ~P~A~P

 !
jmþ1

d~X mþ1

� �
¼

0

�~P~A~P~X m

� �
: ð2:35Þ
Here, with the obvious abuse of notation similarly to (2.11), jmþ1 ¼ ðjmþ1
1 ; jmþ1

2 ; jmþ1
3 ÞT with jmþ1

i ¼ ð½jmþ1
i �0;

. . . ; ½jmþ1
i �Ni

Þ; i ¼ 1! 3, and d~X mþ1 ¼ ðd~X mþ1
1 ; d~X mþ1

2 ; d~X mþ1
3 ÞT with d~X mþ1

i ¼ ð½d~X mþ1
i �0; . . . ; ½d~X mþ1

i �Ni
Þ; i ¼

1! 3, are the vectors of coefficients with respect to the standard basis ff/i
lg

Ni
l¼0g

3
i¼1 of jm+1 and ~X mþ1 � ~X m

in (2.26a) and (2.26b), respectively.
We note that the kernel of KAK is the direct sum of kerK ¼ X? and the space E ¼ kerA \X spanned by the

two null vectors e1 :¼ ð 1
r1

11;� 1
r2

12; 0Þ 2 X and e2 :¼ ð0; 1
r2

12;� 1
r3

13Þ 2 X of A, where 1i :¼ ð1; . . . ; 1ÞT

2 RNiþ1; i ¼ 1! 3. That is, kerKAK ¼ X? 	 spanfei : i ¼ 1! 2g. Introducing the inverse S of KAK restricted
on the set ðkerKAKÞ? � RN , i.e. SKAKv = KAKSv = v for all v 2 (kerKAK)^, and defining the space
R :¼ spanf~P~NKei : i ¼ 1! 2g � f~P~NKv : v 2 kerKAKg � X; we note from the first equation of (2.35) that
d~X mþ1 2T :¼ R? \X and hence that K~NT~Pd~X mþ1 2 ðkerKAKÞ?. Therefore, we can employ a Schur comple-
ment approach in order to transform (2.35) to
jmþ1 ¼ 1

sm
SK~NT~Pd~X mþ1 þ

X2

i¼1

liei; ð2:36aÞ

~P~A~P þ 1

sm

~P~NKSK~N T~P
� �

d~X mþ1 ¼ �~P~A~P~X m �
X2

i¼1

li
~P~NKei; d~X mþ1 2T; ð2:36bÞ
where in (2.36a) we have used the fact that jmþ1 2 X and where li 2 R are unknown. Let ~P : ðR2ÞN ! R? be
the orthogonal projection onto R?. Then, on noting that d~X mþ1 2 R?, (2.36b) can be simplified to
~P~P ~Aþ 1

sm

~NKSK~N T

� �
~P~Pd~X mþ1 ¼ �~P~P~A~P~X m: ð2:37Þ
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Remark 2.7. A possible definition for the projection ~P is ~P :¼ ~IdN � ~Q~QT, where im~Q ¼ R and~QT~Q ¼ Id2. I.e.
the columns of ~Q 2 ðR2ÞN�2 are an orthonormal basis of the subspace R � ðR2ÞN spanned by ~P~NKei � ~P~Nei,
where ei 2 X; i ¼ 1! 2, are the above mentioned null vectors of KAK. We note that the definitions of~P and ~N
yield that dimR ¼ 2. Hence ~P is the orthogonal projection from ðR2ÞN onto ðim~QÞ? � R?.

Remark 2.8. The definition of ~P can easily be adapted to a situation with KB bubbles/areas. Now the subspace
E of the kernel of KAK has dimension KB, and a possible basis consists of vectors that each ‘‘describe an
admissible orientation of the boundary of a bubble’’ in terms of the given KC curves. For example, if
KB = 3 and one area is enclosed by curves 1,2,4 and curve 2 is parameterized in the opposite direction to
curves 1 and 4, then the corresponding eigenvector would be ð 1

r1
11;� 1

r2
12; 0; 1

r4
14; 0; 0Þ. A more rigorous jus-

tification for this can be found in the Appendix.

Theorem 2.4. Let fd~X mþ1; jmþ1g 2 X�X be the unique solution to (2.35). Then d~X mþ1 uniquely solves (2.37).
Moreover, the operator in (2.37) is symmetric positive definite.

Proof. We have already demonstrated that if fd~X mþ1; jmþ1g is the unique solution to (2.35), then d~X mþ1 solves
(2.37). It remains to show that the solution d~X mþ1 to (2.37) forms part of the solution to (2.35). On noting that
~Pd~X mþ1 ¼ d~X mþ1 it follows from (2.37) that
~P ~Aþ 1

sm

~NKSK~N T

� �
~Pd~X mþ1 ¼ �~P~A~P~X m �

X2

i¼1

li
~P~NKei; ð2:38Þ
where li 2 R are uniquely defined by
X2

i¼1

li
~P~NKei ¼ ð~P� ~IdN Þ ~P~A~P~X m þ~P ~Aþ 1

sm

~NKSK~NT

� �
~Pd~X mþ1

� �
2 R;
on recalling that the vectors f~P~NKeig2
i¼1 are linearly independent.

On noting that d~X mþ1 2 R?, we have that K~NT~Pd~X mþ1 2 ðkerKAKÞ?, and hence we can define jmþ1 2 X

uniquely by
jmþ1 ¼ s�1
m SK~NT~Pd~X mþ1 þ

X2

i¼1

liei: ð2:39Þ
Combining (2.38) and (2.39) gives that
~P~A~Pd~X mþ1 þ~P~NKjmþ1 ¼ �~P~A~P~X m; ð2:40Þ

while multiplying (2.39) with KAK yields that
smKAKjmþ1 ¼ K~N T~Pd~X mþ1: ð2:41Þ

Combining (2.40) and (2.41) yields that fd~X mþ1; jmþ1g 2 X�X is the unique solution to (2.35). Moreover,
d~X mþ1 is the unique solution to (2.37).

Finally, on recalling the definition of T, we note that ~PT � R? and K~NT~PR? � ðkerKAKÞ?. Since the
operator KAK is symmetric and positive definite on (kerKAK)^, it is easily established that ~P~P~NKS
K~NT~P~P : T!T is symmetric and positive semi-definite. Moreover, the operator ~P~P~A~P~P : T!T is
symmetric and positive semi-definite. As (2.37) has a unique solution, the operator in (2.37) is non-singular and
hence symmetric positive definite. h

The proof above is easily adapted to the closed curve system (2.13).

2.3. Willmore flow for curves

For a closed curve C � R2 and a parameterization~x 2 R2 of C, the system
~xt:~m ¼ �Ds,� 1
2
,3 þ k,; ,~m ¼ Ds~x ð2:42Þ
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for k = 0 models Willmore flow for curves, also called evolution of elastic curves. The inclusion of the given
parameter k 2 R either penalizes growth (k > 0) or encourages further growth (k < 0) in the length of the
curve. The time dependent choice
kðtÞ ¼

R
C

1
2
j,j4 � jrs,j2

h i
dsR

C j,j
2 ds
models length preserving elastic flow. One can interpret (2.42) as the L2 gradient flow of the energy functional
Eð~xÞ :¼
Z

C

1
2
j,j2 þ k

h i
ds ð2:43Þ
see e.g. [18] for details. In fact, for fixed k 2 R testing the first equation in (2.42) with~xt:~m and integrating over
C yields that
d

dt

Z
C

1
2
j,j2 þ k

h i
ds ¼

Z
C

Ds,þ 1
2
,3 � k,

� �
~m:~xt ds ¼ �

Z
C
j~xt:~mj2 ds 6 0: ð2:44Þ
One notes that the energy (2.43) with k = 0 can be reduced by scaling, as e.g. an expanding circle continuously
reduces the energy E, and that a parameter k > 0 acts as a penalization term for growth in the curve’s length.
For more details on Willmore flow, see also [14,24,12].

We can adapt (2.2a) and (2.2b) to include the extra terms as follows: Find f~X mþ1; jmþ1g 2 V h
0 � W h

0 such
that
~X mþ1 � ~X m

sm
; v~mm

* +h

m

� hrsj
mþ1;rsvim � ½km�þhjmþ1; vihm ¼ �1

2
hðjmÞ3; vihm þ ½km��hjm; vihm 8 v 2 W h

0;

ð2:45aÞ
hjmþ1~mm;~gihm þ hrs

~X mþ1;rs~gim ¼ 0 8 ~g 2 V h
0; ð2:45bÞ
where [r]± :¼ ± max{ ± r,0}, and j0 2 W h
0 is suitably chosen, see Section 3. Note that for a fixed k 2 R we set

km = k, m = 0!M � 1, whereas the time dependent choice
km ¼
1
2
jðjmÞ2j2m;h � jrsjmj2m

jjmj2m;h
; ð2:46Þ
with j �j2mð;hÞ :¼ h�; �iðhÞm , approximates length preserving elastic flow.

Theorem 2.5. Let the assumption ðA0Þ hold. Then there exists a unique solution f~X mþ1; jmþ1g 2 V h
0 � W h

0 to the
system (2.45a) and (2.45b).

Proof. The proof is the same as the proof of Theorem 2.1, with the only change being the additional term
sm½km�þhj; ji

h
m in (2.7). h

Lemma 2.1. Let f~X m; jmgM
m¼1 be the solution of (2.45a) and (2.45b). Then, if km ¼ k 2 R for m = 0!M � 1, we

have for all k = 1!M that
jCkjþ
Xk�1

m¼0

sm½jrsj
mþ1j2mþ½k�þjjmþ1j2m;h�6 jC0jþ

Xk�1

m¼0

sm
1
2

3
4
jðjmÞ2j2m;hþ 1

4
jðjmþ1Þ2j2m;h

h i
�½k��

2
½jjmj2m;hþjjmþ1j2m;h�

h i
:

ð2:47Þ

Similarly, for the time dependent choice (2.46) we have for all k = 1!M that
jCkj 6 jC0j þ
Xk�1

m¼0

smF m; ð2:48Þ
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where, for m = 0!M � 1,
F m :¼ ½jrsj
mj2m � jrsj

mþ1j2m� þ ð½km�þ þ 1
2
½km��Þ½jjmj2m;h � jjmþ1j2m;h� þ 1

8
½jðjmþ1Þ2j2m;h � jðjmÞ2j2m;h�:
Proof. One can show similarly to (2.30) that
1
sm
hrs

~X mþ1;rsð~X mþ1 � ~X mÞim þ hrsj
mþ1;rsj

mþ1im þ ½km�þhjmþ1; jmþ1ihm

¼ 1
2
hðjmÞ3; jmþ1ihm � ½km��hjm; jmþ1ihm 6 1

2
3
4
jðjmÞ2j2m;h þ 1

4
jðjmþ1Þ2j2m;h

h i
� ½km��

2
½jjmj2m;h þ jjmþ1j2m;h� ð2:49Þ
and hence, on noting (2.31), that
1
sm
ðjCmþ1j � jCmjÞ þ jrsj

mþ1j2m þ ½km�þjjmþ1j2m;h 6 1
2

3
4
jðjmÞ2j2m;h þ 1

4
jðjmþ1Þ2j2m;h

h i
� ½km��

2
½jjmj2m;h þ jjmþ1j2m;h�:

ð2:50Þ
Summing (2.50) for m = 0! k � 1 yields the desired result (2.47). On the other hand, for the choice (2.46) it
follows from the first equality in (2.49) that
1
sm
hrs

~X mþ1;rsð~X mþ1 � ~X mÞim þ jrsj
mþ1j2m � jrsj

mj2m þ ½km�þ½jjmþ1j2m;h � jjmj2m;h�

¼ 1
2
hðjmÞ3; jmþ1 � jmihm � ½km��hjm; jmþ1 � jmihm

6
1
8
½jðjmþ1Þ2j2m;h � jðjmÞ2j2m;h� � 1

2
½km��½jjmþ1j2m;h � jjmj2m;h�: ð2:51Þ
Combining (2.51) and (2.31) yields, on noting the definition of Fm, that
jCmþ1j 6 jCmj þ smF m: ð2:52Þ

Summing (2.52) for m = 0! k � 1 yields the desired result (2.48). h

Remark 2.9. Clearly a time continuous semidiscrete, or a fully implicit discrete, version of (2.45a) and (2.45b)
will inherit the tangential equidistribution property (2.16), as it depends solely on (2.14b). In addition, Lemma

2.1 shows that the growth in C can be controlled by a discrete analogue of
R

C½12 j,j
4 � ½k��j,j

2�ds. Moreover, on

choosing v ¼ ph½~X mþ1�~X m

sm
:~xm� 2 W h

0 in (2.45a), where, recall ðA0Þ, ~xm :¼
PN

j¼1~x
m
j /j 2 V h

0; it is straightforward

to show that the solution f~X mþ1; jmþ1g to (2.45a) and (2.45b) satisfies, e.g. in the case k = 0,
� rsj
mþ1;rsp

h
~X mþ1 � ~X m

sm
:~xm

" #* +
m

þ 1

2
ðjmÞ3;

~X mþ1 � ~X m

sm
:~xm

* +h

m

¼ �
~X mþ1 � ~X m

sm
;
~X mþ1 � ~X m

sm
:~xm

" #
~mm

* +h

m

¼ �
~X mþ1 � ~X m

sm
:~xm

�����
�����
2

m;h

: ð2:53Þ
However, it does not seem possible to derive a discrete analogue of (2.44) from (2.53), something that would
lead to a discrete scheme that monotonically decreases the Willmore energy (2.43).

Moreover, the bound (2.48) shows that although we cannot guarantee length preservation for our scheme
(2.45a) and (2.45b) with the choice (2.46), we can show that the growth in the length of the discrete curve is
bounded. In particular, (2.48) suggests that the maximal possible growth goes to zero as s! 0. In fact, in
practice the length of the discrete curve is almost exactly preserved, see Section 3.

Similarly to (2.10), we introduce the matrix M0 2 RN�N by
½M0�kl :¼ h/k;/li
h
m ¼

Z
Cm

ph½/k/l�ds;
and then rewrite (2.45a) and (2.45b) in terms of
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smðA0 þ ½km�þM0Þ �~NT
0

~N 0
~A0

 !
jmþ1

d~X mþ1

� �
¼

b

�~A0
~X m

� �
; ð2:54Þ
where b 2 RN with bj ¼ smh12 ðjmÞ3 � ½km��jm;/ji
h
m, j = 1! N.

The solution to (2.54) can be found as follows. If km > 0, then bA0 :¼ A0 þ ½km�þM0 is a positive definite
matrix, and we can solve (2.54) by solving
~A0 þ
1

sm

~N 0
bA�1

0
~N T

0

� �
d~X mþ1 ¼ �~A0

~X m � 1

sm

~N 0
bA�1

0 b
and then setting
jmþ1 ¼ 1

sm

bA�1
0 ½~N T

0 d~X mþ1 þ b�:
If km 6 0, on the other hand, we note that
1Tð~N T
0 d~X mþ1 þ bÞ ¼ 0 ð2:55Þ
and, similarly to (2.12a), we have that
jmþ1 ¼ 1

sm
S0½~N T

0 d~X mþ1 þ b� þ l1 ¼ 1

sm
S0P½~NT

0 d~X mþ1 þ b� þ l1;
where P ¼ IdN � 11T

1T1
is the orthogonal projection onto (kerA0)^ = (span{1})^. Hence d~X mþ1 satisfies
~A0 þ
1

sm

~N 0PS0P~N T
0

� �
d~X mþ1 ¼ �~A0

~X m � 1

sm

~N 0PS0Pb� l~N 01: ð2:56Þ
Once again, the unique solvability of (2.45a) and (2.45b) yields that the operator ~G on the left hand side of
(2.56) is symmetric and positive definite. Hence l has to be chosen such that condition (2.55) is satisfied. This
can be achieved as follows. Let ~X f :¼ ~G�1ð�~A0

~X m � 1
sm
~N 0PS0PbÞ and ~X g :¼ ~G�1~N 01. Then
l :¼ 1Tbþ 1T~NT
0
~X f

1T~NT
0
~X g

and d~X mþ1 ¼ ~X f � l~X g:
Note that 1T~N T
0
~X g ¼ ~X T

g
~G~X g > 0, as ~G is symmetric positive definite, so l is well defined and uniquely

determined.

3. Results

The Schur complement approach (2.37) can be easily solved with a conjugate gradient solver. For the solu-
tion of KAKy = x in order to compute Sx we can employ an (inner loop) CG solver without a projection, as
the right hand side vector x always satisfies the compatibility condition x 2 (kerKAK)^. See [25] for a justifi-
cation of using a CG solver for a positive semi-definite system.

We note that the implementation of the orthogonal projection (2.33) is straightforward. Let
wk ¼ ðwk

1;w
k
2;w

k
3Þ 2 RN , k = 0! 1, be defined by ½w0

i �j ¼ rid0j and ½w1
i �j ¼ ridNij, j = 0! Ni, i = 1! 3. It then

holds that K = K0K1 with Kk :¼ IdN � wk ½wk �T

½wk �Twk, k = 0! 1. The projection ~P can be constructed in a similar way.

Throughout this section we use uniform time steps sm = s, m = 0!M � 1. For later purposes, we define
~X ðtÞ :¼ t � tm�1

s
~X m þ tm � t

s
~X m�1 t 2 ½tm�1; tm� m P 1:
3.1. Closed curves

Here we compare the scheme (2.2a) and (2.2b) with two other algorithms in the literature, namely the
scheme (2.3a) and (2.3b) from [18] and the scheme (2.4a)–(2.4d) from [3].



J.W. Barrett et al. / Journal of Computational Physics 222 (2007) 441–467 457
The first experiment is for a mild ellipse. The parameters were chosen as follows. N = 64, s = 10�6,
T = 10�3 and the initial curve is a 3:1 ellipse with semiminor axis R = 0.075. The scheme (2.3a) and (2.3b)
eventually breaks down on this experiment, due to the coalescence of grid points. We plot the approximation
~X at time t = 8 · 10�4 in Fig. 4(left). Similarly the scheme (2.4a)–(2.4d) breaks down at t = 3.2 · 10�4, see
Fig. 4(right). We note that a space adaptivity algorithm is described in [3] that, while possibly loosing the dis-
crete analogue of (1.3), would most likely be able to integrate further in this example due to the local coars-
ening of elements. Our scheme (2.2a) and (2.2b), on the other hand, intrinsically moves the vertices such that
the problem can be computed until time t = T, when the solution has reached the shape of a circle; see
Fig. 4(bottom). Recall that a proof of this is given for the continuous in time semidiscrete scheme in Remark
2.4. Note that the relative area loss for (2.2a) and (2.2b) for this experiment was 0.7%. We remark that no
other scheme published in the literature does intrinsically move the mesh points so that no coalescence of mesh
points can occur. However, a scheme where a tangential force is prescribed in order to achieve this has been
published in [30], recall Remark 2.4. Here a finite difference approximation of a very complicated fourth order
system has to be solved, see [30, (4.2)–(4.5)].

In order to investigate the three different schemes further, we conduct the following experiment. Starting
with an initial curve that consists of a semi-circle and a single additional node on the periphery of the circle,
we investigate the ratio r :¼ h~X m=‘~X m , where h~X m :¼ maxj¼1!N j~X mðqjÞ � ~X mðqj�1Þj and ‘~X m :¼ minj¼1!N

j~X mðqjÞ � ~X mðqj�1Þj, over time. We used as parameters N = 128, s = 10�7, T = 5 · 10�4 and R = 0.075 as
the radius of the circle. The evolution of ~X for our scheme (2.2a) and (2.2b) can be seen in Fig. 5. Plots of
the ratio r for the three schemes can be seen in Fig. 6. We note that scheme (2.3a) and (2.3b) could only com-
pute up to time t = 7.9 · 10�6, while scheme (2.4a)–(2.4d) could only compute up to time t = 8.4 · 10�5. The
last plot in that figure shows the length of the curve computed from our approximation (2.2a) and (2.2b) over
time. One can clearly see that although the true solution (a circle) is reached very quickly (at around time
t = 2 · 10�5), in the remaining time the vertices are continually moved tangentially which results in a further
decrease in the ratio r, which approaches the optimal value 1.

The coalescence of vertices for the two schemes cited from the literature can be prevented by heuristically
redistributing all the mesh points tangentially after each time step, as described in [18] and [3], respectively.
In the former case this can lead to excessive loss of area, whereas the latter redistribution is area conserving.
To demonstrate the possible effects of these redistributions, we used the same parameters as in the exper-
iment for Fig. 4 for an initial 8:1 ellipse with semiminor axis R = 0.075. The results for the three respective
schemes can be seen in Fig. 7. The relative area loss for our scheme (2.2a) and (2.2b) is 0.7%, while the
Fig. 4. The three schemes for the first experiment, a 3:1 ellipse.



Fig. 5. A plot of ~X at times t = 0, 10�7, 5 · 10�7, 10�6, 10�5, T = 5 · 10�4.
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Fig. 6. A plot of logr for the ratio r ¼ h~X m=‘~X m for the three schemes (2.3a) and (2.3b), (2.4a)–(2.4d), and (2.2a) and (2.2b). The last plot
shows the length jC(t)j for t 2 [0,2·10�5].

Fig. 7. (2.3a) and (2.3b), (2.4a)–(2.4d), and (2.2a) and (2.2b) for the second experiment, an 8:1 ellipse.

458 J.W. Barrett et al. / Journal of Computational Physics 222 (2007) 441–467
scheme (2.3a) and (2.3b) (now with a redistribution after each time step) lost 14.1% of the area. The scheme
(2.4a)–(2.4d) (with the redistribution as in [3]) lost �0.7% of the area. In part, this can have a dramatic
effect on the size of the final circular solution.
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For a finer mesh, N = 256, and s = 10�7 we obtained the following results for the 8:1 ellipse. For the
scheme (2.3a) and (2.3b) with redistribution, the loss of area is 0.8%, while the scheme (2.4a)–(2.4b) with redis-
tribution lost �0.1% of the initial area. The scheme (2.2a) and (2.2b) can once again integrate until the final
time without artificially redistributing mesh points. The total relative area loss was 0.1%. The final solution
can be seen in Fig. 8.

In order to demonstrate that our scheme can easily handle examples with sharp corners and concavities, we
performed an experiment for the initial curve as in [3, Fig. 16], i.e. for a 2 · 2 square minus a thin rectangle
(0.02 · 1.8). In Fig. 9 we plot ~X ðtÞ for various times t for a computation with discretization parameters
N = 256, s = 10�7 and T = 2 · 10�3. The observed relative area loss was �0.02%. We note that although
the times shown in Fig. 9 were chosen close to the ones shown in [3], the evolution differs considerably from
the one shown there. However, it is difficult to do a direct comparison, as they do not state their discretization
parameters. Moreover, as we obtained virtually identical results when using our scheme with the coarser dis-
cretization parameters N = 128, s = 10�7 and N = 256, s = 10�6, respectively, we are confident that the results
in Fig. 9 are accurate. In addition, we include an experiment for a self intersecting curve which was previously
computed by Escher et al. [21, Fig. 2], see also [3, Fig. 17]. The results for the parameters N = 128, s = 10�4

and T = 0.075 can be seen in Fig. 10, where we note the excellent qualitative agreement with the other two
computations in the literature.

The next experiment underlines the analysis in Remark 2.3. To this end, we fix N = 64, T = 2 and let
s = 10�k, k = 0! 5 for an initial 2:1 ellipse with semiminor axis R = 1. In Table 1 we report on the area loss,
a0 � aM, for our approximation (2.2a) and (2.2b) as well as for the scheme (2.4a)–(2.4d) from [3], which, due to
the relatively small curvatures present in the initial curve, could compute the solution without redistributing
the nodes. We omit the results for the scheme (2.3a) and (2.3b), as without redistribution of vertices it could
Fig. 8. Success for an 8:1 ellipse. Plotted times are t = 0, 10�4, 2 · 10�4, . . . ,10�3.

Fig. 9. Surface diffusion flow for an almost slit domain. ~X ðtÞ at times t = 0, 5 · 10�6, 2 · 10�5, 6 · 10�5, 1.2 · 10�4, 2.3 · 10�4, 4 · 104,
7 · 10�4, 1.1 · 10�3, 1.4 · 10�3, 1.7 · 10�3, T = 2 · 10�3.



Fig. 10. Surface diffusion flow for a rose. ~X ðtÞ at times t = 0, 0.02, 0.05, 0.075.

Table 1
Area loss ja(0) � a(T)j for N = 64 and s = 10�k, k = 0! 5

k (2.2a) and (2.2b) (2.4a)–(2.4d)

0 5.7897e�01 1.0438e�01
1 9.2350e�02 4.7302e�02
2 1.1379e�02 7.4513e�03
3 1.4182e�03 1.0281e�03
4 1.0742e�04 2.9404e�04
5 4.6785e�05 2.1847e�04
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only integrate until time T for k 6 3. As is to be expected from the considerations in Remark 2.3 for the semi-
discrete approximation (2.14a) and (2.14b), when s! 0 the observed area loss for our scheme (2.2a) and
(2.2b) tends to zero. For other schemes, e.g. (2.4a)–(2.4d), we expect the area loss to be bounded from below
by some constant depending on h.

Finally, we perform the following convergence test. As initial shape we choose an 8:1 ellipse with semiminor
axis R = 0.75, and let s = 0.5h2 with T = 15, by which time the numerical solutions have reached a circular
‘‘steady state’’. In Table 2 we report on the relative area loss compared to the area a0 of the initial polygon,
as well as the error jaM � a(0)j and the indicative error iCMj � limt!1jC(t)i, i.e. the differences in area and in
length to the true asymptotic solution ~xH :¼ limt!1~xð�; tÞ, which is given by a circle. We also report on the
error k~X ðT Þ �~xHkL1 :¼ maxj¼1!N minq2J j~X MðqjÞ �~xHj between ~X ðT Þ and the true asymptotic solution~xH.

3.2. Willmore flow for curves

As a first test, we repeated the computations for a true solution as given in [18, p. 1241]. An exact solution
to (2.42), with k = 0, is given by
Table
Relativ

N

16
32
64

128
256
512
~xðq; tÞ ¼ ð1þ 2tÞ
1
4ðcos gðqÞ; sin gðqÞÞT; ,ðq; tÞ ¼ ð1þ 2tÞ�

1
4;
where g(q) = 2pq + 0.1 sin(2pq) in order to make the initial distribution of nodes non-uniform, and where we
note that ~xt:~s ¼ 0. Note furthermore that the true curvature vector is given by ~,ðq; tÞ ¼ �ð1þ 2tÞ�

1
4

ðcos gðqÞ; sin gðqÞÞT. The results can be seen in Table 3, where we report on the errors in L1ð0; T ; L1

ðJ ;Rð2ÞÞÞ for T = 1 and s = 0.5h2. We compare our results from (2.45a) and (2.45b), where, on noting that
~N 0

T ~N 0 is a diagonal matrix with strictly positive diagonal entries, we use as initial data
2
e area loss and some errors with respect to the true asymptotic solution~xH :¼ limt!1~xð�; tÞ

ja0 � aMj/ja0j (%) jaM � a(0)j iCMj � limt!1 jC(t)i k~X ðT Þ �~xHkL1

4.4 9.2741e�01 3.7046e�01 4.7917e�02
1.3 2.6356e�01 1.0482e�01 1.4588e�02
0.4 7.3366e�02 2.9446e�02 5.1632e�03
0.1 2.0149e�02 8.1808e�03 2.4653e�03
0.03 5.5318e�03 2.2717e�03 1.7030e�03
0.008 1.5181e�03 6.2799e�04 1.4872e�03



Table 3
Absolute errors k~X �~xkL1 and kj� ,kL1 for the test problem

N DKS (orig) DKS (mod) (2.45a) and (2.45b)

k~X �~xkL1 k~j�~,kL1 k~X �~xkL1 k~j�~,kL1 k~X �~xkL1 kj� ,kL1

10 2.7861e�01 1.2994e�01 9.8686e�03 6.6960e�03 2.2124e�01 7.6410e�02
20 3.7365e�02 1.7942e�02 2.8856e�03 3.2501e�03 3.6298e�02 8.2407e�03
40 8.3949e�03 4.6565e�03 7.9028e�04 5.5311e�04 8.5412e�03 2.3799e�03
80 2.0410e�03 1.0037e�03 2.1042e�04 2.1395e�04 2.1143e�03 4.4060e�04

160 5.0574e�04 1.1518e�04 5.4438e�05 1.2143e�04 5.2844e�04 2.5524e�05
320 1.2602e�04 4.1575e�05 1.3859e�05 2.4003e�05 1.3224e�04 6.6480e�06
640 3.1463e�05 1.1178e�05 3.4973e�06 5.6171e�06 3.3086e�05 2.4659e�06

Fig. 12
the rig
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j0 :¼ �ð ~N 0
T ~N 0Þ�1 ~N 0

T~A0
~X 0;
to the corresponding version of the scheme in [18], i.e. (2.3a) and (2.3b) with the last term on the left hand side
of (2.3a) replaced by �kmh~jmþ1;~vihm; with no redistribution of nodes. Note that we report on their scheme in
two different columns, as with the original scheme (2.3a) and (2.3b) we could not quite reproduce the numbers
reported in their paper. In particular, we report on the original scheme (2.3a) and (2.3b), ‘‘DKS (orig)’’, and a
small modification, ‘‘DKS (mod)’’. The modified scheme uses j~jmþ1

2j2 instead than j~jmj2 in (2.3a), where
~jmþ1

2 2 V h
0 is such that
h~jmþ1
2;~gihm þ hrs

~X m;rs~gim ¼ 0 8 ~g 2 V h
0:
We show the evolution of a lemniscate under the flow (2.42) with k = 0 and k = 1 in Fig. 11. Note that no
redistribution of nodes was necessary for (2.45a) and (2.45b), whereas the scheme (2.3a) and (2.3b) was not
able to compute this evolution without a redistribution of nodes. The same experiment for the length preserv-
ing elastic flow, i.e. with the time dependent parameter km as in (2.46) is shown in Fig. 12. The initial curve is a
2:1 lemniscate. The discretization parameters are N = 100 and s = 10�3, the final time is T = 1. The length of
the original curve was almost exactly preserved (the length of the initial curve is 7.86 and that has grown by
only 2.3 · 10�3 at time t = T). The length preserving modification of (2.3a) and (2.3b), see [18, p. 1240], how-
ever, fails to compute this example without the redistribution of vertices. The solution at time t = 0.346 can be
seen on the right hand side of the figure.

A similar experiment for a 4:1 lemniscate and T = 4 can be seen in Fig. 13. Again, no redistribution was
needed for scheme (2.45a) and (2.45b), while the scheme (2.3a) and (2.3b) without redistribution failed, this
time at time t = 0.154.
Fig. 11. Willmore flow for a closed curve. On the left k = 0, on the right k = 1.

. Length preserving elastic flow. Our scheme (2.45a) and (2.45b) on the left, the appropriately modified scheme (2.3a) and (2.3b) on
ht.



Fig. 13. Length preserving elastic flow. Our scheme (2.45a) and (2.45b) on the left, the appropriately modified scheme (2.3a) and (2.3b) on
the right.
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3.3. Triple junctions

In the first experiment for triple junctions, see Fig. 14, we simulate how two initially elliptic bubbles
approach the standard double bubble shape, where C2 is a straight line and C1 is the arc of a circle with C3

its reflection, see [26]. Throughout, we assume equal surface energies, ri = 1, i = 1! KC, unless stated other-
wise. A non equal area case can be seen on the right hand side of the same figure.

For the standard double bubble, we checked for our scheme (2.26a) and (2.26b), as h! 0, the absolute area
loss maxi¼1!2ja0

i � aM
i j and the observed angles h:¼(h1,h2,h3) at the triple junctions, which, through symmetry,

are the same at both triple junction points. Here h is defined as the angles formed by the three curve segments
meeting at a triple junction and hi, i = 1! 3, denotes the angle opposite the curve CM

i at a triple junction. The
parameters were chosen as follows. The initial shape is a parameterization of the standard double bubble with
two circles of radius 0.075. We integrate until time T = 10�4 and used a uniform time step size s ¼ 10�5 32

N . For
the results see Table 4, where the maximal element length h~X M at the final time is defined similarly to Table 2,
and the area error is defined with respect to the true double bubble solution~x. Note that the relative area loss

maxi¼1!2
ja0

i �aM
i j

ja0
i j

for these experiments was always less than 10�5%. In a more realistic experiment, we used as

initial data two 3:1 ellipses with semiminor axis R = 0.75, similarly to the left hand side of Fig. 14, and inte-
grated until time T = 2. The results for a time step size of s = 0.5h2 are displayed in Table 5.

We note that for both sets of experiments one observes that the triple junction angles approach the true
value 120� as h! 0, while the error in the area and the relative area loss tend to zero.
Fig. 14. The standard double bubble, with a non equal area case on the right.

Table 4
Area loss and triple junction angles as h! 0

N h~X M Area loss Angles (h1,h2,h3)

32 2.6148e�02 2.0280e�04 (110.4, 139.2, 110.4)
64 1.3012e�02 5.0898e�05 (115.3, 129.4, 115.3)

128 6.1883e�03 1.2261e�05 (117.7, 124.6, 117.7)
256 3.0213e�03 3.0659e�06 (118.9, 122.3, 118.9)
512 1.4932e�03 7.6653e�07 (119.4, 121.1, 119.4)

1024 7.4231e�04 1.9163e�07 (119.7, 120.6, 119.7)
2048 3.7115e�04 4.7909e�08 (119.9, 120.3, 119.9)
4096 1.8531e�04 1.1963e�08 (119.9, 120.1, 119.9)
8192 9.2590e�05 2.9908e�09 (120.0, 120.1, 120.0)



Table 5
Area loss and triple junction angles as h! 0

N h~X M Relative area loss (%) Angles (h1,h2,h3)

32 3.5583e�01 0.3 (109.6, 140.9, 109.6)
64 1.7864e�01 0.08 (114.9, 130.2, 114.9)

128 8.9415e�02 0.02 (117.5, 125.1, 117.5)
256 4.4261e�02 0.007 (118.8, 122.5, 118.8)
512 2.2132e�02 0.002 (119.4, 121.2, 119.4)

Fig. 15. Tangential movement for an equal area double bubble. A plot of ~X ðtÞ at times t = 0 and t = T.
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The considerations for the semidiscrete version of (2.26a) and (2.26b) in Remarks 2.4 and 2.5 are underlined
by the following experiment. Using the parameters N = 64, s = 10�3 and T = 1 we investigate how an initial
approximation of two semi-circles of radius R = 1 with a straight line in between, where we uniformly param-
eterize only the upper half of each curve, is evolved by our scheme (2.26a) and (2.26b). As can be seen in
Fig. 15, the vertices on the two circular curve segments are equidistributed, while the nodes on the straight
line segment experience no tangential movement. This is in line with the analysis for the semidiscrete scheme
in Remarks 2.4 and 2.5, which predicts that on each curve Ci, i = 1! 3, the vertices will be equidistributed as
long as the elements on that curve are not locally parallel.

An equal area double bubble for different surface energies can be seen in Fig. 16. The surface energies were
chosen to be ðr1; r2; r3Þ ¼ ð1; 1; 3

2
Þ and ð1; 1; 7

4
Þ, respectively. That means that the length of the curve C3 is

weighted more in the overall energy jCj, so that it will shorten during the evolution. For the parameters
N = 256, T = 1 and s = 10�4, and starting from the standard double bubble with radii R = 1, the observed
angles at the triple junctions at time T are h = (136.8, 140.7, 82.5) and h = (148.8,153,58.2) respectively. (Note
that Young’s law yields h = (138.6,138.6, 82.8) and h = (151, 151,57.9), respectively, for the exact solution.)
An experiment for the surface energies (1, 1,2) can be seen in Fig. 17. Here the observed angles at the triple
junctions at time T are h = (173.4, 178.9, 7.8). However, one should note that the true steady state for this
experiment would consist of only two circular curves, with the third one shrunk to a point. Of course, we can-
not compute until that singularity.
Fig. 16. An equal area double bubble for surface energies ð1; 1; 3
2
Þ and ð1; 1; 7

4
Þ.



Fig. 17. An equal area double bubble for surface energies (1,1,2). ~X ðtÞ at times t = 0, 0.1 (left) and t = T (right).

Fig. 18. The standard triple bubble (left) and a non equal area triple bubble (right).

Fig. 19. The standard quadruple bubble (left) and a non equal area quadruple bubble (right).

Fig. 20. A standard quintic bubble (left) and a non equal area quintic bubble (right).
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Fig. 21. A standard sextic bubble (left) and a non equal area sextic bubble (right).

Fig. 22. A standard septic bubble (left) and a non equal area septic bubble (right).
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For the remaining experiments we always use equal surface energies. Examples with three and four enclosed
areas, respectively, can be seen in Figs. 18 and 19. Examples with five, six and seven enclosed areas can be seen
in Figs. 20, 21 and 22, respectively.

4. Conclusions

We have presented a fully practical finite element approximation for the motion by surface diffusion of
curves in R2. Our scheme enjoys the property that no artificial redistribution of vertices is necessary in prac-
tice. To our knowledge, this is the first such scheme in the literature. Moreover, the presented scheme can eas-
ily be generalized to the case of multiple curves that meet at triple junction points. Also the case of mean
curvature flow, V ¼ ,, with and without triple junctions can be treated with the ideas developed in this paper.
Moreover, nonlinear functions of mean curvature can equally be used as a driving force. The equation
V ¼ f ð,Þ can be discretized, for example, by
~X mþ1 � ~X m

sm
; v~mm

* +h

m

� hf ðjmþ1Þ; vihm ¼ 0 8 v 2 W h
0;
together with (2.2b), and so will also inherit the equidistribution property (2.16). Furthermore, the combined
effect of motion by surface diffusion and motion by mean curvature can be modelled with a small change to
our scheme. This and the additional effects of curves intersecting the external boundary of the domain will be
studied in the forthcoming paper [5].

Further topics of our future research related to the presented paper include the extension to fully aniso-
tropic surface energies and to geometric flows of 2-dimensional hypersurfaces in R3, including mean curvature
flow, surface diffusion and Willmore flow.
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Appendix

Here we want to investigate the kernel of the operator KAK in (2.35) for the case of an arbitrary number KB

of enclosed areas. Note that we assume that at each triple junction exactly three curves meet and that we
exclude any intersection of a curve with the external boundary. Hence we have that 6(KB � 1) = 2KC = 3KT,
where KC and KT are the number of curves and triple junction points, respectively.

The definitions (2.34) are trivially extended to the general case, while (2.33) needs to be replaced by
K : RN ! X :¼ fðz1; . . . ; zKC Þ 2 RN :
X3

i¼1

ð�1Þpj;ij rij ½zij �pj;ij
N ij
¼ 0 j ¼ 1! KTg; ðA:1Þ
where now N :¼
PKC

i¼1ðNi þ 1Þ and pj;ij 2 f0; 1g, i = 1! 3, j = 1! KT, are defined as in Remark 2.6.
We now want to find a basis for the space E � X � RN , where kerKAK ¼ kerK 	 E � X? 	 E. For sim-

plicity we assume that ri = 1, i = 1! KC. Then it is clear that the KC vectors v1 ¼ ð11; 0; . . . ; 0Þ;
v2 ¼ ð0; 12; 0; . . . ; 0Þ; . . . ; vKC ¼ ð0; . . . ; 0; 1KC Þ 2 RN form a basis of kerA. Furthermore E ¼ kerA \X.

Lemma A1. It holds that dim E = KB. A possible basis of E is given by ei :¼ ða1
i 11; . . . ; aKC

i 1KC Þ; i ¼ 1! KB,

where aj
i 2 f�1; 0; 1g are such that for aj

i 6¼ 0, ~X m
j

1þaj
i

2 qþ 1�aj
i

2 ð1� qÞ
	 


parameterizes a segment of the boundary

of bubble i clock-wise, such that the union of all these segments yields the whole boundary of bubble i.

Proof. On noting (A.1) it is clear that by construction ei 2 X and ei 2 kerA, for all i = 1! KB. It is also easy
to see that the feigKB

i¼1 are linearly independent. It remains to show that dim E = KB. Let C 2 RKT�KC be the
matrix such that
e :¼ ða111; . . . ; aKC 1KC Þ 2 E � kerA \X () Ca ¼ 0; ðA:2Þ

where a :¼ ða1; . . . ; aKC Þ 2 RKC . That is, C describes the constraints in (A.1) and each row has exactly three
non-zero entries (of modulus one), and each column has exactly two nonzero entries that add up to zero.

The latter property immediately yields that rankC 6 KT � 1. We will now show that rankC P KT � 1. Let
D 2 RðKT�1Þ�KC denote the first KT � 1 rows of C and assume
DTb ¼ 0 ðA:3Þ
for b 2 RKT�1. For a fixed i 2 {1, . . . KT � 1}, let (‘1, . . . ,‘L) 2 {1, . . . ,KT}L, with ‘1 = KT and ‘L = i denote a
path within the given network of curves connecting triple junction point KKT to point Ki. As we consider a
connected network of curves, such a path always exists. It is now straightforward to show by induction that
it follows from (A.3) that b‘j

¼ 0 for all j = 1! L, and in particular b‘L
¼ bi ¼ 0.

Repeating this argument for all i = 1! KT � 1 shows that (A.3) implies b = 0. Hence KT � 1 ¼
rankD P rankC. Thus we have that rankC ¼ KT � 1 and, on recalling (A.2), it holds that dim E ¼
KC � rankC ¼ KC � ðKT � 1Þ ¼ 3ðKB � 1Þ � 2ðKB � 1Þ þ 1 ¼ KB. h
References

[1] A. Averbuch, M. Israeli, I. Ravve, Electromigration of intergranular voids in metal films for microelectronic interconnects, J.
Comput. Phys. 186 (2003) 481–502.
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